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Morphology transitions induced by chemotherapy in carcinomasin situ
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Recently, we have proposed a nutrient-limited model for the avascular growth of tumors including cell
proliferation, motility, and death@S. C. Ferreira, Jr., M. L. Martins, and M. J. Vilela, Phys. Rev. E65, 021907
~2002!#, which qualitatively reproduces commonly observed morphologies for carcinomasin situ. In the
present work, we analyze the effects of distinct chemotherapeutic strategies on the patterns, scaling, and
growth laws obtained for the nutrient-limited model. Two kinds of chemotherapeutic strategies were consid-
ered, namely, those that kill cancer cells and those that block cell mitosis but allow the cell to survive for some
time. Depending on the chemotherapeutic schedule used, the tumors are completely eliminated, reach a sta-
tionary size, or grow following power laws. The model suggests that the scaling properties of the tumors are
not affected by the mild cytotoxic treatments, although a reduction in growth rates and an increase in inva-
siveness are observed. For the strategies based on antimitotic drugs, a morphological transition in which
compact tumors become more fractal under aggressive treatments was seen.
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I. INTRODUCTION

Cancer is the uncontrolled cellular growth in which ne
plastic cells invade adjacent normal tissues and give ris
secondary tumors~metastasis! on tissues or organs distan
from its primary origin@1#. A cancer that remains confine
within a messed surface, without break of the underly
basement membrane, is referred to as carcinomain situ. In
situ carcinoma is characterized by intense cytological atyp
necrosis, and frequent and abnormal mitosis, the tumor c
being arranged in various distinctive patterns@2#. A malig-
nant tumor is derived from a single cell that, years before
tumor becomes clinically detectable, began an inappropr
pathway of proliferation@3#. Although cancers are extreme
diverse and heterogeneous, a small number of pivotal s
associated to both deregulated cell proliferation and s
pressed cell death are required for the development of
and all tumors. Indeed, all neoplasms evolve according
universal scheme@4,5#. In the struggle against cancer, surg
cal removal, chemotherapy, and/or radiotherapy are the m
commonly used treatments for the complete eradication
the tumor mass. Nowadays, new approaches, such as im
notoxins @6#, gene @7#, antiangiogenic@8#, and virus @9#
therapies, are being developed and have been succes
used in the treatment of several kinds of experimental
human tumors.

Mathematical models are always used as a tentative
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describing cancer growth. In particular, numerous mod
based on classical reaction-diffusion equations have b
proposed to investigate the growth of tumor spheroids@10#,
cancer progress and its interaction with the immune sys
@11#, and the tumor angiogenesis@12,13#. Fractal growth pat-
terns in gliomas~brain tumors! were recently investigated b
Sander and Deisboeck@14#. Recently, we have studied
diffusion-limited model for the growth of carcinomasin situ,
in which cell proliferation, motility, and death are locall
controlled by growth factors@15,16#. This model generates
compact, connected, and disconnected morphologies cha
terized by the Gompertzian growth in time and distinct sc
ing laws for the tumor interfaces. These patterns result fr
a competition between cancer cell division and migratio
both directed outwards the growth factor concentration g
dient, and cell death. Depending on the parameters con
ling the cell response to the degradation rate of growth f
tors, morphology transitions from disconnected to comp
patterns and from disconnected to connected patterns are
served. In order to generate papillary and ramified morpho
gies found in many epithelial cancers and trichoblastom
we were led to analyze the effects of nutrient competition
cancer development@17#.

In addition to the vast literature dedicated to tum
growth modeling, many research papers addressing ca
therapies have recently been published. Indeed, cancer
kinetics under treatments using antimitotic agents@18,19#,
radiotherapy@20,21#, virus that replicates selectively in tu
mor cells@22#, antiangiogenic chemicals@23#, as wells as the
effects of tumor drug resistance and tumor vasculature
chemotherapies@24# were studied using mathematical mo
els. It is worthwhile to mention that the literature related
©2003 The American Physical Society14-1
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FERREIRA, JR., MARTINS, AND VILELA PHYSICAL REVIEW E67, 051914 ~2003!
cancer growth and therapy is enormous, and there is m
activity by mathematicians, physicists, and theoretical bio
gists. Thus, the above cited references constitute a pa
selection chosen according to the authors’ research inter

In this paper, we analyze the effects of distinct chem
therapeutic strategies in the model for the growth of avas
lar tumors proposed by us@17#. Specifically, we are inter-
ested in possible changes in the tumor patterns, scaling,
growth laws reported in the original model triggered by ch
motherapies. The paper is organized as follows. In Sec. II
nutrient-limited model for cancer growth and its main resu
are reviewed. In Sec. III, chemotherapeutic treatments
aim to kill cancer cells are introduced in the framework
the present model and their effects discussed. In Sec. I
model for chemotherapy with antimitotic agents is cons
ered. Finally, we draw some conclusions in Sec. V.

II. THE NUTRIENT-LIMITED MODEL

Our nutrient-limited model combines macroscop
reaction-diffusion equations, describing the nutrient fie
concentration, with microscopic stochastic rules govern
the actions of individual tumor cells. The basic principl
included in the model are cell proliferation, motility, deat
as well as competition for nutrients among cancer and n
mal cells. Also, the nutrient concentration field locally co
trols cell division, migration, and death.

A. The model

1. The tissue

The tissue, represented by a square lattice of sizeL
11)3(L11) and lattice constantD, is fed by a single cap-
illary vessel atx50, i.e., the top of the lattice. The capillar
is the unique source from which nutrients diffuse through
tissue towards the individual cells. Although a tumor mas
composed of different cell subpopulations@4#, the model
considers only three types: normal, cancer, and tumor d
cells. Any site, with coordinatesxW5( iD, j D), i , j
50,1,2, . . . ,L, is occupied by only one of these cell type
In contrast to the normal cells, one or more cancer cells
pile up in a given site. In turn, dead tumor cells are ine
Thus, each lattice site can be thought of as a group of cel
which the normal, dead, and cancer cell populations ass
one of the possible valuessn(xW )5sd(xW )50,1 andsc(xW )
50,1,2, . . . , respectively. According to the theory of th
monoclonal origin of cancer@3#, a single cancer cell aty
5LD/2 and at a distanceX from the capillary is introduced
in the normal tissue. Periodic boundary conditions along
horizontal axis are used. The rowi 50 represents the capil
lary vessel and the sites withi 5L11 constitute the externa
border of the tissue. This geometry is particularly adequat
describe the growth of carcinomas~epithelial tumors! in situ
because the present model considers that the tumor m
receives nutrients only by diffusion from the capillary vess
However, the model can be extended to other cancers.
05191
ch
-
ial
st.
-
u-

nd
-
e

s
at
f
a

-

g

r-

e
is

ad

n
.
in
e

e

to

ss
l.

2. The nutrients

The nutrients are divided into two classes: essential to
proliferation, those necessary for DNA synthesis, and non
sential to cell division. The essential and nonessential nu
ents are described by the concentration fieldsN(xW ,t) and
M (xW ,t), respectively. These nutrient fields obey the dime
sionless diffusion equations~see Ref.@17# for the complete
variable transformations!

]N

]t
5¹2N2a2Nsn2lNa2Nsc ~1!

and

]M

]t
5¹2M2a2Msn2lMa2Msc , ~2!

in which differentiated nutrient consumption rates for norm
and cancer cells by factorslN and lM are assumed. It is
important to notice that the model admits the simplest fo
for the nutrient diffusion, i.e., linear equations with consta
coefficients. This assumption seems to be an acceptable
approach, since only the initial avascular stages of tum
growth, involving a relatively small number of cancer cel
are considered. So, nonlinear effects on the diffusion p
cesses are expected to be minimal. Also,lN.lM is used,
reflecting the larger affinity of cancer cells for essential n
trients.

The boundary conditions satisfied by the normalized
trient concentration fields areN(x50)5M (x50)51, rep-
resenting the continuous and fixed supply of nutrients p
vided by the capillary vessel. The hypothesis that a blo
vessel provides a fixed nutrient supply to the cells in a tis
is a simplification that neglects the complex response of
vascular system to the metabolic changes of cell beha
@25#. N(y50)5N(y5L) and M (y50)5M (y5L), corre-
sponding to the periodic boundary conditions along they
axis, used in order to minimize edge effects and, therefo
better simulate an extended tissue. At last, Neumann bou
ary conditions,]N(x5L)/]x5]M (x5L)/]x50, are im-
posed to the border of the tissue, meaning that the nutri
cannot traverse the external layer of the epithelial tissue

3. Cell dynamics

In our original model, each tumor cell, randomly select
with equal probability, can carry out one of the three actio
division, migration, or death. However, in the present wo
we consider just the accommodation that happens during
mitosis among the daughter cells. Consequently, each tu
cell can carry out one of the following two actions.

~a! Division. Cancer cells divide by mitosis with probabi
ity Pdiv . If the chosen cell is inside the tumor, its daugh
will pile up at that site, andsc(xW )→sc(xW )11. Otherwise, if
the selected cell is on the tumor border, its daughter cell w
occupy at random one of their nearest neighbor sitesxW8 con-
taining a normal or a necrotic cell and, therefore,sc(xW8)
51 andsn,d(xW8)50. The mitotic probabilityPdiv is deter-
4-2
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MORPHOLOGY TRANSITIONS INDUCED BY . . . PHYSICAL REVIEW E67, 051914 ~2003!
mined by the concentration per cancer cell of the essen
nutrientsN present on the microenvironment of the selec
cell:

Pdiv~xW !512expF2S N~xW !

sc~xW !udiv
D 2G . ~3!

The Gaussian term is included in order to produce a sigm
curve saturated to unity, and the model parameterudiv con-
trols the shape of this sigmoid.

~b! Death. Cancer cells die with probabilityPdel . Thus,
sc(xW )→sc(xW )21 andsd(xW )51 whensc vanishes. The cel
death probabilityPdel is determined by the concentration p
cancer cell of the nonessential nutrientsM present on the
microenvironment of the selected cell:

Pdel~xW !5expF2S M ~xW !

sc~xW !udel
D 2G , ~4!

i.e., a Gaussian distribution whose variance depends on
model parameterudel .

The biological basis for these cell dynamic rules can
found in Ref.@17#. However, it is worthwhile to notice tha
from the point of view of the so-called kinetic cellula
theory, which provides a general framework for the statisti
description of the population dynamics of interacting ce
@11#, the local probabilitiesPdiv andPdel can be thought of
as an effective kinetic cellular model.

4. Computer implementation

The growth model simulations were implemented us
the following procedure. At each time stepT, Eqs. ~1! and
~2! are numerically solved in the stationary state (]N/]t
5]M /]t50) through relaxation methods. Provided the n
trient concentration at any lattice site,NC(T) cancer cells are
sequentially selected at random with equal probability. F
each one of them, a tentative action~division or death! is
randomly chosen with equal probability and the time is
cremented byDT51/NC(T). The selected cell action will be
implemented or not according to the correspondent lo
probabilities determined by Eq.~3! or ~4!. At the end of this

FIG. 1. Temporal profile of drug concentration at the capilla
vessel.
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FIG. 2. Tumor growth patterns generated by the limited-nutri
model under chemotherapeutic treatment. The patterns are draw
a gray scale; where the darker gray regions represent higher ca
cell populations, the black points represent the sites occupied
necrotic cells, and the white regions represent the normal tis
The tissue size is 5003500, and the initial ‘‘cancer seed’’ is 300
sites distant from the capillary. The total number of cancer c
depends on tumor morphology and reach up to 23105 for compact
patterns. Two typical patterns, without~left! and with soft treatment
~right! are shown for~a! compact,~b! papillary, ~c! ramified mor-
phologies, and~d! patterns with a necrotic core. The fixed param
eters used to generate these morphologies are listed in Table I.
treatment means that the period between two doses is largt
520) and, therefore, the tumor grows continuously. The other
rameters areudel

(Q)50.1 andN05104.
4-3
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FERREIRA, JR., MARTINS, AND VILELA PHYSICAL REVIEW E67, 051914 ~2003!
sequence ofNC(T) tentatives, a new time step begins and t
entire procedure~solution of the diffusion equations and a
plication of the cell dynamics! is iterated. The simulations
stop if any tumor cell reaches the capillary vessel.

B. Main results

The model reproduces commonly observed tumor m
phologies including the papillary, compact, and ramified p
terns shown in Fig. 2. The nutrient consumption by norm
and cancer cells, controlled by the model parametersa, lN ,
and lM , plays a central role in morphology selection. F
small values of these parameters, corresponding to gro
conditions in which individual cells demand small nutrie
supplies, the patterns tend to be compact and circular@Fig.
2~a!#. However, if the mitotic rate of cancer cells is small d
to the large amount of nutrients demanded for cell divisi
generating a significant competition for nutrients, these co
pact patterns progressively assume papillarylike morph
gies @Fig. 2~b!#. At high nutrient consumption rates thes
papillary patterns become the rule and, for low cancer
division, continuously transform into thin tips, filaments,
chords of cells~Fig. 2c!. Also, the model generates patter
with an inner core of died cells for high nutrient consum
tion or cell division rates@Fig. 2~d!#. As observed inin vivo
tumors andin vitro multicell spheroids@10#, these simulated
patterns consist of three distinct regions: a central necr
core, an inner rim of quiescent cancer cells, and a nar
outer shell of proliferating cells.

The tumor patterns generated by our nutrient-limit
model were characterized by its gyration radiusRg , total
number of cancer cellsNC , and number of sites on tumo
peripheryS ~including the surface of holes, if any!. The gy-
ration radiusRg is defined as

Rg5S 1

n (
i 51

n

r i
2D 1/2

, ~5!

wheren is the number of sites occupied by the pattern~can-
cer or necrotic cells! and r i is the distance of the occupie
site i from the tumor mass center. These quantities could
related to clinically important criteria such as progre
curves, growth rates~volumetric doubling time! at given ra-
dii, and proliferative and necrotic fractions of the tumor.

The progress in time of cancer cell populations for all t
simulated patterns follows the Gompertz curves:

NC~T!5A exp$2exp@2k~T2Tc!#%, ~6!

representing an initial exponential growth that is saturate
larger times.

Alternatively, as a function of the number of sites occ
pied by the pattern,n, both Rg andS obey power law scal-
ings given byRg;nn andS;ns, respectively. For solid pat
terns these exponents aren;0.5 ands;0.5, corresponding
to effective circular and nonfractal patterns. As the nutri
consumption increases, the patterns tend to papillary
shapes for which the exponents increases towards the valu
1 and the exponentn varies in the range@0.50,0.60#, indi-
cating a fractal morphology for the tumor.
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III. CYTOTOXIC CHEMOTHERAPEUTIC DRUGS

The prime objective of the antitumoral treatment wi
chemotherapeutic drugs is to kill or at least to stop the p
liferation of the cancer cells. In general, the drugs should
only on proliferating cells, mainly the cancer ones. Howev
drugs also destroy proliferating normal cells promoting s
eral collateral effects@26#. Indeed, epithelial cells from the
respiratory and gastrointestinal systems, which frequently
produce in order to substitute their dead counterparts,
strongly affected. In this section, we analyze a simple c
motherapeutic model in which the complex details of t
cell-cycling responses to the drugs are taken into accoun
an effective kinetic model.

A. The model

As used in previous works@27#, the chemotherapy is
modeled by a periodic delivery of cytotoxic drugs throu
the same capillary vessel supplying the nutrients to the
sue. Several cytotoxic drugs and their properties were
haustively studied such as amsacrine, cisplatin, cycloph
phamide, cytarabine, mustine, and anthracycline@28#. Here,
the numerous barriers involved in tumor drug delivery@29#
were not considered, and the treatment begins when the
mor mass containsN0 cancer cells. When a dose is applie
the drug concentration in the capillary assumes a maxim
value Q̃0, which progressively decreases due to the grad
drug elimination by the organism. Hence, new doses are
riodically administered at time intervalst in most of the
chemotherapeutic strategies@28#. Various functional forms
for time evolution of drug concentration have been cons
ered in therapy models@27#. Here, we adopt a realistic mode
in which the drug concentration at the capillary,Q̃(T), is a
function of time written as

Q̃~T!5H 0 if T,T0

Q̃0 exp@2~T2 l t!/T3# if T01 l t<T,T0

1~ l 11!t,
~7!

wherel 50,1,2, . . . is thenumber of applied doses,Tx is the
characteristic time for the drug elimination by the organis
andT0 is the time at which the treatment begins. The fun
tional form of Q̃(T) is shown in Fig. 1.

As the nutrients, drugs also diffuse from the capillary ve
sel toward the individual cells, and their concentrati
Q(xW ,t) at any lattice site at each time step is given by t
stationary solution of the diffusion equation

]Q

]t
5DQ¹2Q2G2Q2lQG2Qsc . ~8!

The first, second, and third terms on the right hand s
represent drug diffusion, natural degradation, and absorp
by cancer cells, respectively. Again, this equation is the s
plest one describing the diffusion phenomenon. Equation~8!
is written using the same dimensionless variables of Eqs.~1!
4-4
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MORPHOLOGY TRANSITIONS INDUCED BY . . . PHYSICAL REVIEW E67, 051914 ~2003!
and~2!. Also, the parametersQ̃0 andDQ can be made equa
to unity without loss of generality. The boundary conditio
are the same as those used for the nutrient fields, exce
the capillary vessel where the concentration at each time
is given by Eq.~7!.

Finally, a single change is introduced into the cell dyna
ics described in Sec. II: an additional chance of death occ
whenever a cancer cell enters mitosis. Thus, every tim
cancer cell divides, each one of the generated cells can
with probability

Pdel
(Q)~xW !512expF2S Q~xW !

sc~xW !udel
(Q)D 2G . ~9!

The parameterudel
(Q) controls the cell sensitivity to the drugs

Also, because in the original nutrient-limited model the n
mal cells do not take part in the cell dynamics, i.e., they
not divide or die, we disregard the chemotherapeutic effe
on normal cells.

B. Results

The main aim of this work was to investigate the effe
of treatments on the various morphologies, and scaling
growth laws observed in the original model. Thus, for ea
morphology, determined by the fixed parameters reporte
Table I, the treatment parameters, namely,t ~the dose pe-
riod!, udel

(Q) ~drug efficiency!, andN0 ~tumor size at the treat
ment beginning! were varied. Such parameters can be
rectly tested in the laboratory. The remaining parame
(lQ , G, andT3) associated with drug diffusion and elim
nation were also fixed in all the simulations.

In Fig. 2, the corresponding patterns for compact, pa
lary, and ramified morphologies with and without treatme
are shown. In this figure the treatment is not able to ce
tumor development. As can be seen, the morphological
mor patterns do not change under mild treatment. Howe
the regions occupied by the tumors are larger than th
without treatment. These results suggest that the direct at
to the tumor might be an inadequate treatment strategy
deed, the more invasive is the tumor, the higher is the p
sibility of the cancer cells to reach the capillary vessel a
consequently, metastasize successfully. Such result i
agreement with Israel’s claim@30# that cancer cells trigge
adaptation mechanisms in stress circumstances simila
those observed in bacterial colonies. Moreover, in our mo
neither genetic nor epigenetic changes are necessary to
plain the increase of tumor aggressiveness. It natur

TABLE I. Fixed parameters used in tumor growth simulatio
under chemotherapeutic treatment for each morphology type.

Morphology lN lM lQ a G udiv udel Tx

Compact 25 10 10 2/L 2/L 0.3 0.03 4
Papillary 200 10 10 2/L 2/L 0.3 0.03 4
Ramified 200 10 10 3/L 2/L 0.3 0.01 4
Necrotic 50 25 10 3/L 2/L 0.3 0.03 4
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emerges from the growth rules. A tumor submitted to succ
sive chemotherapeutic treatments that do not lead to its c
plete eradication may progressively become more resist
aggressive, and malignant.

Very similar scaling lawsRg;nn and S;ns for the
treated tumors were observed (n ands values are reported in
Ref. @17#!. The small differences in the exponent values
the number of tumor peripheral sites vanishes at the asy
totical limit of tumor size. This exponent invariance sugge
that the fractal morphology is a robust aspect of these tum
and cannot be changed by small perturbations in the
microenvironment. Obviously, the scaling laws forRg andS
are not defined for the tumors that cease their growth.

We have also studied the influence of the treatment
rameters (t, udel

(Q) , N0) on the tumor growth curves. In Fig
3, the evolution in time of the total number of cancer ce
for compact tumors is shown. Depending on the dose pe
t the tumors may disappear, saturate their growth,
progress according to power laws. Actually, the time inter
between two consecutive doses is a fundamental clinical
ture determining the treatment success. The power law
gime observed whent is large means a slow progress, nea
contrasting with the exponential growth present in the G
mpertz law describing tumor progress without chemothera
The tumor size at the beginning of the treatment is anot
important factor. Indeed, the exponents of the power la
characterizing the tumor growth are smaller when the ini
tumor size is larger. This scenario seems to be univer
Sometimes, as shown Fig. 3, compact tumors that bega
receive drug doses at regular intervals oft55 when it con-
tainedN05104 cancer cells were eliminated slower than a
other one that began to be treated withN0553104 cancer
cells. However, this is not the rule. For example, simulatio
of papillary tumors indicate that smaller tumors are fas
eliminated whent55. Finally, since the growth law expo
nents depend on the parameter sets used, they are not

FIG. 3. Growth curves for compact patterns~dashed lines!.
Three dose intervals were tested (t55,10,20) in tumors with two
distinct initial sizes:N05104 and N0553104 ~inset!. The expo-
nents of the power laws~slopes of the straight lines! are 1.3~0.98!
for the tumors withN05104 (N0553104) whent520, and 0.05
~20.09! whent510. Times are in arbitrary units.
4-5
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versal. Concerning theudel
(Q) parameter, it just modifies th

treatment efficiency.
Fractal tumors are more resistant to treatments. In Fig

the growth curvesNC3T are drawn for compact, papillary
ramified, and necrotic morphologies shown in Fig. 2. O
can see that the more fractal is the tumor larger is the
quired time to eliminate it. Indeed, the lower growth rates
fractal tumors imply on a large fraction of cancer cells ma
tained at a quiescent state. So, since chemotherapeutic d
considered in this model only act in the dividing cells, t
treatment becomes inefficient when the major fraction of
cancer cells are quiescent.

In addition, we have studied tumor patterns exhibiting
central necrotic core. The results for cancer growth and
correspondent power laws are similar to those found
compact patterns. The density of cancer cells and their a
age division rates through the growth patterns are not sig
catively altered when the tumors are submitted to mild tre
ments~long time intervals between consecutive drug dose!.
Moreover, their growth patterns are very similar to tho
found in the untreated counterparts. Finally, tumors exhi
ing necrotic cores are more easily eliminated when sho
periods of the drug administration are considered~Fig. 4!.

IV. ANTIMITOTIC CHEMOTHERAPEUTIC DRUGS

Several drugs used in cancer chemotherapies do not
cancer cells. Instead, they aim to stop the cell cycle in s
cific checkpoints. As a consequence of that, the tumors c
or slow down their growth rate. Examples of such dru
include the antimitotic agent curacinA that blocks the cell
cycle in theM phase, mitomycinC, doxorubicin, and acla-
rubicin, among others@28#. In order to analyze the effects o
drugs that inhibit cell division on tumor patterns, we intr
duce a very simple change in the cell dynamics of the mo
described in the preceding section. Instead of an additio
death probability given by Eq.~9!, the division probability is
modified by including an additional term in Eq.~3!. So, the
new division probability becomes

FIG. 4. Growth curves for distinct tumor morphologies. T
doses were applied at intervalst55 in tumors with initial sizes
N05104. Times are in arbitrary units.
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Pdiv512expF2S N

scudiv
D 2

1S Q

scudiv
(Q)D 2G , ~10!

in which the first and second terms in the exponential ar
ment compete between themselves stimulating and inhibi
the cell mitosis, respectively. The parameterudiv

(Q) controls the
drug influence on the cell division. Obviously, if the exp
nential argument is positive, thenPdiv[0.

The biological interpretation of the present model is ve
distinct from that considered in the preceding section. No
the drugs modify the intrinsic characteristics of the can
cells and, consequently, the tumors must behave in a dif
ent manner from those treated with cytotoxic agents. Inde
as one can see in Fig. 5, a morphological transition for
tumor patterns when the dose periods decrease is observ
the period is sufficiently short, the tumor size remains co
stant during the therapy. Obviously, the critical period d
pends on other model parameters, especially onudiv

(Q) . In or-
der to see this dependence, the critical value ofudiv

(Q)* for
which the tumors cease their growth with probability 1 as
function of t was evaluated. A mean field analysis of E
~10! providesudiv

(Q);exp(2t/Tx), in agreement with the simu
lations as indicated in Fig. 6. Thus, an exponential de
with a universal characteristic lengthTx was found, which is
independent of the other model parameters. This law, rela
two important clinical parameters, is valid for a wide set
parameter values. In addition to the compact tumors sho
in Fig. 5, papillary tumors were also simulated under antim
totic treatment, and a similar morphology transition was o
served.

Figure 7 shows that these morphological transitions
curred at well definedudiv

(Q) values. Near the critical value
instabilities in the reaction-diffusion equations lead to

FIG. 5. Compact patterns under treatment with antimito
drugs. The dose periodt was varied andudiv

(Q)50.3 was fixed. The
other parameters are indicated in Table I. Tumors become more
more fractal as the dose period decreases. At a critical period
tumors reach a frozen state in which their sizes remain cons
during all the treatments.
4-6
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MORPHOLOGY TRANSITIONS INDUCED BY . . . PHYSICAL REVIEW E67, 051914 ~2003!
branching growth@14#. Below this threshold the cell deat
rate equals cell division, and the tumor growth effective
stops. This qualitative behavior near the transition will pro
ably not be observed in experimental tumors, since a v
reliable determination ofudiv

(Q) is very difficult. On the other
hand, experiments exhibiting both regimes, above and be
the critical value, are realizable today due to the great
vances made in drug delivery control. Such assays m
corroborate the complex behaviors predicted by our mod

The antimitotic treatment affects both the growth a
scaling laws. The compact patterns in the original model,
which the gyration radius and number of occupied sites
the tumor border scale as the square root of the total num
of occupied sites~i.e., n5s51/2), become progressivel
more fractal as the dose intervals are decreased. Co
quently,n.1/2 ands.1/2 were obtained, indicating fracta
tumors with a fractal dimension given bydf51/n. In gen-
eral, all the tumors become more fractal when submitted

FIG. 6. Critical valuesudiv
(Q)* as a function of the dose periodt.

The symbols represent simulational data and the straight lines
respective exponential fittings. The open circles refer to the si
lations using the parameters for the compact patterns listed in T
I. The squares~filled circles! represent the same simulations, exce
that T356 (udiv50.1). Also, the slopes 1/4~circle! and 1/6
~square! are indicated. In order to estimateudiv

(Q)* , we realized 20
independent simulations for each value ofudiv

(Q) and considered tha
the growth failure for all these tentatives means tumor latency.t is
in arbitrary units.

FIG. 7. Morphological transitions atudiv
(Q)* . The patterns were

originally compact, and the model parameters are listed in Tab
The dose period was fixed att52 andudiv

(Q) varied around its criti-
cal value.
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antimitotic treatments. So, there is a neat contrast with
invariance of the fractal dimension of the growing tumo
under the cytotoxic treatment described in the preceding
tion. In Fig. 8, the increase in the number of cancer ce
relative to the treatment beginning, (NC2N0), is plotted, for
distinct dose intervals, as a function of the time after t
treatment beginning (T2T0). These curves suggest pow
laws for time evolution of the number of cancer cells with
weak dependence on thet parameter. Indeed, we have (NC
2N0);(T2T0)b with bP@1.2,1.4#. As t decreases, the
number of tumor cells initially decays for a while, but su
sequently recovers its growth~inset of Fig. 8!. Below a given
dose interval,NC decreases monotonically up to a consta
value.

In order to analyze the cell division rates through the
mor, we computed the average cancer cell density (^sc&)
and cell division rate (wdiv) along a longitudinal cut acros
the growth pattern. These average values were plotted
function of the distance from the capillary vessel. In Fig.
these plots are shown for compact patterns treated with
tinct t values. For largert values@Fig. 9~a!# both, division
rate and cancer cell density, have sharp maxima on the tu
border in front of and opposite to the capillary vessel. Not
that the peaks for division rate are significatively narrow
than those for cancer cell density, demonstrating that the
liferative fraction of the tumor comprises just a small ri
located at the tumor border. As the treatment is intensifi
~shortert values are considered!, the cell densities through
the tumors become more uniform, whereas the division ra
continue exhibiting sharp maxima at the tumor borders@Figs.
9~b! and 9~c!#. If t is sufficiently short in order to halt the
tumor growth, the division rates and cancer densities beco
uniform along the tumor@Fig. 9~d!#. So, in these cases th
division rates are counterbalanced by the death rates, lea
to a vanishing net rate of cancer growth. All these resu

he
-
le

t

I.

FIG. 8. Growth curves~dashed lines! for the papillary patterns
under antimitotic therapy. The dose intervals used weret
520,10,7,6,5,4,3,2 and the upper curves represent the larger i
vals. For the larger dose intervals (t>5), the tumor growth follows
power laws with exponents in the range@1.2,1.4#. For shorter inter-
vals (t<4), the curves are shown in a semilog plot~inset!. In these
simulations,udiv

(Q)50.3 was used in addition to the parameters
Table I. Times are in arbitrary units.
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FIG. 9. Density of cancer cellssc ~continuous lines! and division rateswdiv ~dashed lines! as a function of the distance from the capilla
vessel along a longitudinal cut of the tumor. The fixed model parameters are those referent to the compact morphology indicated
andudiv

(Q)50.3. The plots correspond to~a! t520, ~b! t55, ~c! t52, and~d! t51. The left and right vertical axes representsc andwdiv ,
respectively. Distances are in lattice units.
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show that the tumor patterns are altered when the mit
properties of the cancer cells are modified by external age

V. CONCLUSIONS

In the present work, a reaction-diffusion model to sim
late the effects of chemotherapies on the growth of carc
masin situ have been studied. The model includes cell de
and division, competition among cancer and normal cells
nutrients, and periodical drug administration. Two kinds
chemotherapies, using cytotoxic and antimitotic drugs, w
modeled.

The main feature of this model is the use of phenome
logical, macroscopic reaction-diffusion equations for nu
ents and drugs controlling the stochastic actions of individ
cancer cells. Such probabilistic, microscopic rules play
role of an effective kinetic model for interacting cell pop
lations. So, from a theoretical point of view, for all cellula
kinetic models, the derivation of related macroscopic eq
tions from the microscopic description assumes great
evance. This is a difficult and not fully understood proble
which has attracted much attention@11,31# ~and references
therein!. In particular, Lachowicz@31# mathematically dis-
cussed the diffusive and hydrodynamic macroscopic limits
a general class of kinetic models describing the evolution
05191
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individuals undergoing stochastic pairwise interactions.
In the cytotoxic model the tumors can be complete

eradicated, cease their growth, or grow continuously. T
last case occurs when the treatment is inefficient or the
tervals between consecutive doses of drugs are large. M
over, the morphologies and scaling laws of the growing
mor patterns are preserved. In contrast, for therape
approaches using antimitotic agents a morphological tra
tion in the tumor patterns was observed. The growth patte
become progressively more fractal as more effective tre
ments ~shorter intervals between consecutive doses an
more efficient drugs! are considered.

Such morphological transitions are similar to recent st
ies claiming that bacterial colonies exposed to nonlethal c
centrations of antibiotics exhibit drastic changes in th
growth patterns@32#. For bacteria, these changes were i
puted to variations in bacterial properties such as metab
load and chemotaxis. In turn, normal and cancer cells c
tured in monolayer and collagen gel exhibit a dynami
transition in their aggregation regimes as an adaptive
sponse to the growth constraints imposed by high cell po
lation density or long permanence in culture@33#. Again, the
results obtained in the present work are in agreement w
the point of view that cancer cells can develop an integra
defense program against stress situations similar to the
4-8
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MORPHOLOGY TRANSITIONS INDUCED BY . . . PHYSICAL REVIEW E67, 051914 ~2003!
sponse of bacterial colonies facing severe and susta
threats@30#. However, as far as we are concerned, there
no reports on cancer literature concerning morphology tr
sitions in the histological patterns of tumors submitted
chemotherapy. Thus, formal models similar to the one p
posed in this paper, generally not familiar for most of b
medical researchers@34#, can guide and refine new exper
ments intended to analyze such morphological transitio
Currently, experimentsin vitro with cancer cells are being
performed in our laboratories in order to investigate th
morphological transitions.

It is important to mention that, usually, real effective tre
ments employ several therapeutic methods simultaneo
@26#. So, a more realistic chemotherapeutic model sho
consider combined cytotoxic and antimitotic treatmen
Nevertheless, in these cases relevant features such a
n

in

n-

ci.

A

A

E
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robustness of the tumors fractal scaling and the morphol
transitions can be masked. Finally, we are modeling ot
cancer therapeutic strategies, such as virus and immuno
ins therapies, as well as the combination of distinct tre
ments, by using reaction-diffusion models similar to tho
considered in this paper.
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