PHYSICAL REVIEW E 67, 051914 (2003
Morphology transitions induced by chemotherapy in carcinomasin situ
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Recently, we have proposed a nutrient-limited model for the avascular growth of tumors including cell
proliferation, motility, and deatfS. C. Ferreira, Jr., M. L. Martins, and M. J. Vilela, Phys. Re63-021907
(2002], which qualitatively reproduces commonly observed morphologies for carcinamaiu. In the
present work, we analyze the effects of distinct chemotherapeutic strategies on the patterns, scaling, and
growth laws obtained for the nutrient-limited model. Two kinds of chemotherapeutic strategies were consid-
ered, namely, those that kill cancer cells and those that block cell mitosis but allow the cell to survive for some
time. Depending on the chemotherapeutic schedule used, the tumors are completely eliminated, reach a sta-
tionary size, or grow following power laws. The model suggests that the scaling properties of the tumors are
not affected by the mild cytotoxic treatments, although a reduction in growth rates and an increase in inva-
siveness are observed. For the strategies based on antimitotic drugs, a morphological transition in which
compact tumors become more fractal under aggressive treatments was seen.
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[. INTRODUCTION describing cancer growth. In particular, numerous models
based on classical reaction-diffusion equations have been
Cancer is the uncontrolled cellular growth in which neo-proposed to investigate the growth of tumor spherdidy,
plastic cells invade adjacent normal tissues and give rise toancer progress and its interaction with the immune system
secondary tumorgmetastasison tissues or organs distant [11], and the tumor angiogene$is2,13. Fractal growth pat-
from its primary origin[1]. A cancer that remains confined terns in gliomagbrain tumor$ were recently investigated by
within a messed surface, without break of the underlyingSander and Deisboedkl4]. Recently, we have studied a
basement membrane, is referred to as carcinonsitu. In diffusion-limited model for the growth of carcinomassitu,
situ carcinoma is characterized by intense cytological atypiain which cell proliferation, motility, and death are locally
necrosis, and frequent and abnormal mitosis, the tumor cellsontrolled by growth factor§l5,16. This model generates
being arranged in various distinctive pattef2$. A malig- compact, connected, and disconnected morphologies charac-
nant tumor is derived from a single cell that, years before theerized by the Gompertzian growth in time and distinct scal-
tumor becomes clinically detectable, began an inappropriating laws for the tumor interfaces. These patterns result from
pathway of proliferatiori3]. Although cancers are extremely a competition between cancer cell division and migration,
diverse and heterogeneous, a small number of pivotal stefisoth directed outwards the growth factor concentration gra-
associated to both deregulated cell proliferation and supdient, and cell death. Depending on the parameters control-
pressed cell death are required for the development of anljng the cell response to the degradation rate of growth fac-
and all tumors. Indeed, all neoplasms evolve according to &rs, morphology transitions from disconnected to compact
universal schemp4,5]. In the struggle against cancer, surgi- patterns and from disconnected to connected patterns are ob-
cal removal, chemotherapy, and/or radiotherapy are the moserved. In order to generate papillary and ramified morpholo-
commonly used treatments for the complete eradication ofjies found in many epithelial cancers and trichoblastomas,
the tumor mass. Nowadays, new approaches, such as immwe were led to analyze the effects of nutrient competition in
notoxins [6], gene[7], antiangiogenic[8], and virus[9]  cancer development7].
therapies, are being developed and have been successfullyIn addition to the vast literature dedicated to tumor
used in the treatment of several kinds of experimental angrowth modeling, many research papers addressing cancer
human tumors. therapies have recently been published. Indeed, cancer cell
Mathematical models are always used as a tentative fdkinetics under treatments using antimitotic agejrit8,19,
radiotherapy{ 20,21], virus that replicates selectively in tu-
mor cells[22], antiangiogenic chemical23], as wells as the

*Electronic address: silviojr@fisica.ufmg.br effects of tumor drug resistance and tumor vasculature on
"Electronic address: mmartins@ufv.br chemotherapief24] were studied using mathematical mod-
*Electronic address: marcelo@ufv.br els. It is worthwhile to mention that the literature related to
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cancer growth and therapy is enormous, and there is much 2. The nutrients

activity by mathematicians, physicists, and theoretical biolo-  The nytrients are divided into two classes: essential to cell

gists. Thus, the above cited references constitute a partigho|iferation, those necessary for DNA synthesis, and nones-

selection chosen according to the authors’ research interesential to cell division. The essential and nonessential nutri-
In this paper, we analyze the effects of distinct chemo-

) - ents are described by the concentration fid1d§€,t) and
therapeutic strategies in the model for the growth of avascu-

lar tumors proposed by U&7]. Specifically, we are inter- M(x,t), respectively. These nutrient fields obey the dimen-

. ) . . sionless diffusion equationsee Ref[17] for the complete
ested in possible changes in the tumor patterns, scaling, an riable transformations

growth laws reported in the original model triggered by che-
motherapies. The paper is organized as follows. In Sec. Il the PN

nutrient-limited model for cancer growth and its main results E:VZN— @®’No,— Aya®No, (1)
are reviewed. In Sec. lll, chemotherapeutic treatments that

aim to kill cancer cells are introduced in the framework of

the present model and their effects discussed. In Sec. IV, a

model for chemotherapy with antimitotic agents is consid- IM

ered. Finally, we draw some conclusions in Sec. V. 7=V2M —a*Mao,—\ya*Mag, 2

in which differentiated nutrient consumption rates for normal
Il. THE NUTRIENT-LIMITED MODEL and cancer cells by factorsy and A\, are assumed. It is
important to notice that the model admits the simplest form
for the nutrient diffusion, i.e., linear equations with constant
coefficients. This assumption seems to be an acceptable first
pproach, since only the initial avascular stages of tumor

Our nutrient-limited model combines macroscopic
reaction-diffusion equations, describing the nutrient field
concentration, with microscopic stochastic rules governin

Fhe aCt'Or_]S of individual tumor ce!ls. T_he bas'(,:_p”nc'plesgrowth, involving a relatively small number of cancer cells,
included in the model are cell proliferation, motility, death, ;.o ~onsidered. So, nonlinear effects on the diffusion pro-

as well as competition for nutrients among cancer and NOlzesses are expected to be minimal. Alsg>\,, is used,

mal cells. Also, the nutrient concentration field locally con- reflecting the larger affinity of cancer cells for essential nu-
trols cell division, migration, and death. trients.
The boundary conditions satisfied by the normalized nu-
trient concentration fields ard(x=0)=M(x=0)=1, rep-
A. The model resenting the continuous and fixed supply of nutrients pro-
1. The tissue vided by the capillary vessel. The hypothesis that a blood
. ) vessel provides a fixed nutrient supply to the cells in a tissue
The tissue, represented by a square lattice of slze (s a simplification that neglects the complex response of the
+1)x(L+1) and lattice constant, is fed by a single cap- yascular system to the metabolic changes of cell behavior
illary vessel atx=0, i.e., the top of the lattice. The capillary [25]. N(y=0)=N(y=L) and M(y=0)=M(y=L), corre-
tissue towards the individual cells. Although a tumor mass istiS, used in order to minimize edge effects and, therefore,
composed of different cell subpopulatiofé], the model  petter simulate an extended tissue. At last, Neumann bound-
considers only three types: normal, cancer, and tumor deagy conditions, IN(x=L)/dx=aM (x=L)/dx=0, are im-
cells. Any site, with coordinatesx=(iA,jA), 1i,] posed to the border of the tissue, meaning that the nutrients
=0,1,2 ... L, is occupied by only one of these cell types. cannot traverse the external layer of the epithelial tissue.
In contrast to the normal cells, one or more cancer cells can

pile up in a given site. In turn, dead tumor cells are inert. 3. Cell dynamics
Thus, each lattice site can be thought of as a group of cells in

which the normal, dead, and cancer cell populations assUMgitn equal probability, can carry out one of the three actions:

one of the possible values,(x)=o04(x)=0,1 andac(X)  division, migration, or death. However, in the present work
=0,1,2..., respectively. According to the theory of the e consider just the accommodation that happens during cell
monoclonal origin of cancef3], a single cancer cell &  mjtosis among the daughter cells. Consequently, each tumor
=LA/2 and at a distanck from the capillary is introduced cell can carry out one of the following two actions.

in the normal_ tissue. Periodic bo_undary conditions along_ the (a) Division. Cancer cells divide by mitosis with probabil-
horizontal axis are used. The raw-0 represents the capil- ity p,, . If the chosen cell is inside the tumor, its daughter
lary vessel anq the sites witke L+ 1 constitute the external | o pile up at that site, andr,(X)— o«(X) + 1. Otherwise, if
borde_r of the tissue. This geometry Is pa_rtlcularly a_deq_uate %he selected cell is on the tumor border, its daughter cell will
describe the growth of carcinoméapithelial tumorgin situ d f thei L hbor sites
because the present model considers that the tumor maS§CUPY at random one of their nearest neighbor o=on-
receives nutrients only by diffusion from the capillary vessel.taining a normal or a necrotic cell and, thereforg(x’)
However, the model can be extended to other cancers. =1 andoy, 4(x")=0. The mitotic probabilityP;, is deter-

In our original model, each tumor cell, randomly selected
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FIG. 1. Temporal profile of drug concentration at the capillary
vessel.

mined by the concentration per cancer cell of the essentia
nutrientsN present on the microenvironment of the selected

cell:

N(X)

oo(X) bgiy

3

I

Pdiv()z) =1- eXF{ -

The Gaussian term is included in order to produce a sigmoic

curve saturated to unity, and the model paramétgr con-
trols the shape of this sigmoid.

(b) Death Cancer cells die with probabilit?4.,. Thus,
ac(i)—wc(i) -1 andcrd(i) =1 wheno vanishes. The cell
death probabilityP 4, is determined by the concentration per
cancer cell of the nonessential nutries present on the
microenvironment of the selected cell:

)]

M(X)

0e(X) Ogel

(4)

Pde|(>z)=exl{ -

i.e., a Gaussian distribution whose variance depends on th

model parametefg, .

The biological basis for these cell dynamic rules can be

found in Ref.[17]. However, it is worthwhile to notice that
from the point of view of the so-called kinetic cellular
theory, which provides a general framework for the statistical
description of the population dynamics of interacting cells
[11], the local probabilitiedy;, and P4 can be thought of
as an effective kinetic cellular model.

4. Computer implementation

The growth model simulations were implemented using
the following procedure. At each time stdp Egs. (1) and
(2) are numerically solved in the stationary stat@N(dt

=JM/at=0) through relaxation methods. Provided the nu-g4

trient concentration at any lattice siféc(T) cancer cells are
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(d)

FIG. 2. Tumor growth patterns generated by the limited-nutrient
model under chemotherapeutic treatment. The patterns are drawn on
a gray scale; where the darker gray regions represent higher cancer
cell populations, the black points represent the sites occupied by
necrotic cells, and the white regions represent the normal tissue.
The tissue size is 500500, and the initial “cancer seed” is 300
sites distant from the capillary. The total number of cancer cells
epends on tumor morphology and reach up ¥012° for compact
patterns. Two typical patterns, witholeft) and with soft treatment

sequentially selected at random with equal probability. FOlright) are shown for@ compact,(b) papillary, (c) ramified mor-

each one of them, a tentative acti¢division or death is

randomly chosen with equal probability and the time is in-e

phologies, andd) patterns with a necrotic core. The fixed param-
ters used to generate these morphologies are listed in Table I. Mild

cremented bYAT=1/N¢(T). The selected cell action will be treatment means that the period between two doses is large (
implemented or not according to the correspondent locak20) and, therefore, the tumor grows continuously. The other pa-

probabilities determined by E@3) or (4). At the end of this

rameters ar@{2)=0.1 andNy=10".
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sequence di(T) tentatives, a new time step begins and the  [ll. CYTOTOXIC CHEMOTHERAPEUTIC DRUGS
entire procedurésolution of the diffusion equations and ap-
plication of the cell dynamigsis iterated. The simulations
stop if any tumor cell reaches the capillary vessel.

The prime objective of the antitumoral treatment with
chemotherapeutic drugs is to kill or at least to stop the pro-
liferation of the cancer cells. In general, the drugs should act
only on proliferating cells, mainly the cancer ones. However,
drugs also destroy proliferating normal cells promoting sev-

The model reproduces commonly observed tumor moreral collateral effect$26]. Indeed, epithelial cells from the
phologies including the papillary, compact, and ramified patrespiratory and gastrointestinal systems, which frequently re-
terns shown in Fig. 2. The nutrient consumption by normalproduce in order to substitute their dead counterparts, are
and cancer cells, controlled by the model parameaiers,, strongly affected. In this section, we analyze a simple che-
and X\, plays a central role in morphology selection. For motherapeutic model in which the complex details of the
small values of these parameters, corresponding to growttell-cycling responses to the drugs are taken into account by
conditions in which individual cells demand small nutrient an effective kinetic model.
supplies, the patterns tend to be compact and cird&ay.

2(a)]. However, if the mitotic rate of cancer cells is small due A. The model

to the large amount of nutrients demanded for cell division, . . .
generating a significant competition for nutrients, these com- AS used in previous work$27], the chemotherapy is
pact patterns progressively assume papillarylike morpholomodeled by a periodic delivery of cytotoxic drugs through
gies [Fig. 2(b)]. At high nutrient consumption rates these the same capillary ve_:ssel supplying the nutrlen_ts to the tis-
papillary patterns become the rule and, for low cancer celfue- Several cytotoxic drugs and their properties were ex-
division, continuously transform into thin tips, filaments, or haustively studied such as amsacrine, cisplatin, cyclophos-
chords of cellgFig. 29. Also, the model generates patterns Phamide, cytarabine, mustine, and anthracyclef. Here,
with an inner core of died cells for high nutrient consump-the numerous barriers involved in tumor drug delivgzg]

tion or cell division rategFig. 2(d)]. As observed irin vivo ~ Were not considered, and the treatment begins when the tu-
tumors andn vitro multicell spheroidg10], these simulated MOr Mass containsly cancer cells. When a dose is applied,
patterns consist of three distinct regions: a central necrotith® drug concentration in the capillary assumes a maximum
core, an inner rim of quiescent cancer cells, and a narrowalue Q,, which progressively decreases due to the gradual
outer shell of proliferating cells. drug elimination by the organism. Hence, new doses are pe-

The tumor patterns generated by our nutrient-limitedriodically administered at time intervals in most of the
model were characterized by its gyration radRg, total chemotherapeutic strategi¢28]. Various functional forms
number of cancer celldlc, and number of sites on tumor for time evolution of drug concentration have been consid-
peripheryS (including the surface of holes, if anyThe gy-  ered in therapy mode[27]. Here, we adopt a realistic model

B. Main results

ration radiusR, is defined as in which the drug concentration at the capilla€(T), is a
function of time written as
1 n 1/2
Rg:(ﬁ i;l r|2) ’ (5) 0 |f T<T0

T={ Onexd —(T—17)/T if To+tlrsT<T
wheren is the number of sites occupied by the patteran- QT Qo exl —( ] ° °

cer or necrotic cellsandr; is the distance of the occupied ++ D,

sitei from the tumor mass center. These quantities could be (7
related to clinically important criteria such as progress . , .
curves, growth rateévolumetric doubling timgat given ra-  Wherel=0,1,2 ... is thenumber of applied doses, is the

dii, and proliferative and necrotic fractions of the tumor, ~ characteristic time for the drug elimination by the organism,
The progress in time of cancer cell populations for all the?nd To is the time at which the treatment begins. The func-

simulated patterns follows the Gompertz curves: tional form of Q(T) is shown in Fig. 1.
As the nutrients, drugs also diffuse from the capillary ves-
Ne(T)=A exp{—exd —k(T—-To) ]}, (6)  sel toward the individual cells, and their concentration

I%;)(i,t) at any lattice site at each time step is given by the

representing an initial exponential growth that is saturated i ) : ) . :
P g P g stationary solution of the diffusion equation

larger times.

Alternatively, as a function of the number of sites occu- 70
pied by the pattern, both Ry and S obey power law scal- X DAV20-T20—\AT2 )
ings given byR;~n" andS~n”, respectively. For solid pat- at V'R Q= hol Qo ®

terns these exponents are-0.5 ando~0.5, corresponding

to effective circular and nonfractal patterns. As the nutrientThe first, second, and third terms on the right hand side
consumption increases, the patterns tend to papillarylikeepresent drug diffusion, natural degradation, and absorption
shapes for which the exponemtincreases towards the value by cancer cells, respectively. Again, this equation is the sim-
1 and the exponent varies in the rangg0.50,0.6Q, indi-  plest one describing the diffusion phenomenon. Equdiyn
cating a fractal morphology for the tumor. is written using the same dimensionless variables of Elgs.
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TABLE I. Fixed parameters used in tumor growth simulations  1¢° . — . — 3
under chemotherapeutic treatment for each morphology type. without treatment 3

Morphology Ay Ay Ao a I 64, 6Oge T

Compact 25 10 10
Papillary 200 10 10
Ramified 200 10 10
Necrotic 50 25 10

2L 03 0.03
2L 03 0.03
2L 03 o0.01
2L 03 0.03

=10 3

ReRp
PN

—
=

vl 0ol

and(2). Also, the parameter@o andDg can be made equal 10
to unity without loss of generality. The boundary conditions
are the same as those used for the nutrient fields, except ¢ . . o 10 T ' €
the capillary vessel where the concentration at each time ste 10 10 &
is given by Eq.(7). T
Finally, a single change is introduced into the cell dynam- FIG. 3. Growth curves for compact pattertdashed lines

ics described in Sec. II: an additional chance of death occurgy, .o doée intervals were testeg=(5,10,20) in tumors with two
whenever a cancer cell enters mitosis. Thus, every time gistinct initial sizesiN,=10* and N0=’5>;104 (insey. The expo-

cancer cell divides, each one of the generated cells can dignts of the power lawslopes of the straight lingsire 1.3(0.99
with probability for the tumors withNo=10* (N,=5% 10%) when r=20, and 0.05
. 5 (—=0.09 when7=10. Times are in arbitrary units.
ng)()-(’) —1—exd — ( &
el oo(X) 652) ' emerges from the growth rules. A tumor submitted to succes-
sive chemotherapeutic treatments that do not lead to its com-
The parameteﬂ(Q) controls the cell sensitivity to the drugs. plete eradication may progressively become more resistant,

del . k
Also, because in the original nutrient-limited model the nor-299ressive, and malignant.

mal cells do not take part in the cell dynamics, i.e., they do Very similar scaling lawsR,~n" and S~n” for the

not divide or die, we disregard the chemotherapeutic effectdated tumors were observed@ndo values are reported in
on normal cells. Ref.[17]). The small differences in the exponent values for

the number of tumor peripheral sites vanishes at the asymp-
totical limit of tumor size. This exponent invariance suggests
that the fractal morphology is a robust aspect of these tumors
The main aim of this work was to investigate the effectsand cannot be changed by small perturbations in the cell
of treatments on the various morphologies, and scaling anthicroenvironment. Obviously, the scaling laws f@§ andS
growth laws observed in the original model. Thus, for eachare not defined for the tumors that cease their growth.
morphology, determined by the fixed parameters reported in We have also studied the influence of the treatment pa-
Table |, the treatment parameters, namelythe dose pe- rameters ¢, 0&%{, Ny) on the tumor growth curves. In Fig.
riod), 69 (drug efficiency, andN, (tumor size at the treat- 3, the evolution in time of the total number of cancer cells
ment beginning were varied. Such parameters can be di-for compact tumors is shown. Depending on the dose period
rectly tested in the laboratory. The remaining parameters the tumors may disappear, saturate their growth, or
(Aq. I', andT) associated with drug diffusion and elimi- progress according to power laws. Actually, the time interval
nation were also fixed in all the simulations. between two consecutive doses is a fundamental clinical fea-
In Fig. 2, the corresponding patterns for compact, papilture determining the treatment success. The power law re-
lary, and ramified morphologies with and without treatmentgime observed when is large means a slow progress, neatly
are shown. In this figure the treatment is not able to ceaseontrasting with the exponential growth present in the Go-
tumor development. As can be seen, the morphological tumpertz law describing tumor progress without chemotherapy.
mor patterns do not change under mild treatment. HoweveiThe tumor size at the beginning of the treatment is another
the regions occupied by the tumors are larger than thosenportant factor. Indeed, the exponents of the power laws
without treatment. These results suggest that the direct attacaracterizing the tumor growth are smaller when the initial
to the tumor might be an inadequate treatment strategy. Irtumor size is larger. This scenario seems to be universal.
deed, the more invasive is the tumor, the higher is the posSometimes, as shown Fig. 3, compact tumors that began to
sibility of the cancer cells to reach the capillary vessel andreceive drug doses at regular intervalsref5 when it con-
consequently, metastasize successfully. Such result is iminedNy,=10" cancer cells were eliminated slower than an-
agreement with Israel’s clairf80] that cancer cells trigger other one that began to be treated with=5x 10* cancer
adaptation mechanisms in stress circumstances similar wells. However, this is not the rule. For example, simulations
those observed in bacterial colonies. Moreover, in our modebf papillary tumors indicate that smaller tumors are faster
neither genetic nor epigenetic changes are necessary to estiminated whenr=5. Finally, since the growth law expo-
plain the increase of tumor aggressiveness. It naturallpents depend on the parameter sets used, they are not uni-

\ .
N, =10* 10 1 : -
l =

9

B. Results
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FIG. 4. Growth curves for distinct tumor morphologies. The
doses were applied at intervats=5 in tumors with initial sizes =5 =10 =20

No= 10" Times are in arbitrary units. ) S
FIG. 5. Compact patterns under treatment with antimitotic

drugs. The dose period was varied and{?) =0.3 was fixed. The
versal. Concerning th@&%} parameter, it just modifies the other parameters are indicated in Table I. Tumors become more and
treatment efficiency. more fractal as the dose period decreases. At a critical period the
Fractal tumors are more resistant to treatments. In Fig. 4umors reach a frozen state in which their sizes remain constant
the growth curvedN: X T are drawn for compact, papillary, during all the treatments.
ramified, and necrotic morphologies shown in Fig. 2. One
can see that the more fractal is the tumor larger is the re- ;{ N )2 ( Q )2
Pdiv =1—exg — ( )
0 cOdiy

quired time to eliminate it. Indeed, the lower growth rates of @l | (10
fractal tumors imply on a large fraction of cancer cells main- ol
tained at a quiescent state. So, since chemotherapeutic drugs
considered in this model only act in the dividing cells, thein which the first and second terms in the exponential argu-
treatment becomes inefficient when the major fraction of thement compete between themselves stimulating and inhibiting
cancer cells are quiescent. the cell mitosis, respectively. The parama?&?v) controls the

In addition, we have studied tumor patterns exhibiting adrug influence on the cell division. Obviously, if the expo-
central necrotic core. The results for cancer growth and th&ential argument is positive, the?y;,=0.
correspondent power laws are similar to those found for The biological interpretation of the present model is very
compact patterns. The density of cancer cells and their aveflistinct from that considered in the preceding section. Now,
age division rates through the growth patterns are not signifith® drugs modify the intrinsic characteristics of the cancer
catively altered when the tumors are submitted to mild treat®€llS and, consequently, the tumors must behave in a differ-

ments(long time intervals between consecutive drug dpses ent manner from those treated with cytotoxic agents. Indeed,

Moreover, their growth patterns are very similar to those®S ON€ can see in Fig. 5, a morphological transition for the

found in the untreated counterparts. Finally, tumors exhibit-tumor patterns when the dose periods decrease is observed. If

. . . I the period is sufficiently short, the tumor size remains con-
ing necrotic cores are more easily eliminated when shorter

periods of the drug administration are considefEiy. 4). stant during the therapy. Obviously, the _critical period de-
pends on other model parameters, espemallﬁ&?ﬁu. In or-
der to see this dependence, the critical values§f* for
which the tumors cease their growth with probability 1 as a
Several drugs used in cancer chemotherapies do not kifunction of 7 was evaluated. A mean field analysis of Eq.
cancer cells. Instead, they aim to stop the cell cycle in spet10) providesé(Y) ~exp(— /T,), in agreement with the simu-
cific checkpoints. As a consequence of that, the tumors ceadgtions as indicated in Fig. 6. Thus, an exponential decay
or slow down their growth rate. Examples of such drugswith a universal characteristic lengify was found, which is
include the antimitotic agent curacia that blocks the cell independent of the other model parameters. This law, relating
cycle in theM phase, mitomycirC, doxorubicin, and acla- two important clinical parameters, is valid for a wide set of
rubicin, among otherg28]. In order to analyze the effects of parameter values. In addition to the compact tumors shown
drugs that inhibit cell division on tumor patterns, we intro- in Fig. 5, papillary tumors were also simulated under antimi-
duce a very simple change in the cell dynamics of the modelotic treatment, and a similar morphology transition was ob-
described in the preceding section. Instead of an additionalerved.
death probability given by Eq9), the division probability is Figure 7 shows that these morphological transitions oc-
modified by including an additional term in E). So, the curred at well definewg?v) values. Near the critical value,
new division probability becomes instabilities in the reaction-diffusion equations lead to a

IV. ANTIMITOTIC CHEMOTHERAPEUTIC DRUGS
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FIG. 6. Critical values?idm asa function of the dose. perlqd FIG. 8. Growth curveddashed linesfor the papillary patterns
The symbols represent simulational data and the straight lines the L .
. e . — under antimitotic therapy. The dose intervals used were
respective exponential fittings. The open circles refer to the simu-_ :
. . . ; =20,10,7,6,5,4,3,2 and the upper curves represent the larger inter-
lations using the parameters for the compact patterns listed in Table

. . . . vals. For the larger dose intervals#5), the tumor growth follows
I. The squaretfilled circles represent the same simulations, except ower laws with exponents in the ranie2,1.4. For shorter inter-
that Tx=6 (64i,=0.1). Also, the slopes 1/4circle) and 1/6 P P .

< i i [ .
(square are indicated. In order to estimaﬁ?v)* , we realized 20 vals (r=4), the curves are shown in a semilog plieisey. In these

] - Q)= - it

independent simulations for each valueg3f’ and considered that simulations, 6g;, =0.3 was used in addition to the parameters of
. . v . Table I. Times are in arbitrary units.

the growth failure for all these tentatives means tumor latendy.

in arbitrary units. antimitotic treatments. So, there is a neat contrast with the

invariance of the fractal dimension of the growing tumors

branching growtt{14]. Below this threshold the cell death ynder the cytotoxic treatment described in the preceding sec-
rate equals cell division, and the tumor growth effectivelytion. In Fig. 8, the increase in the number of cancer cells
StOpS. This qua”tative behavior near the transition will prob-re|ative to the treatment beginninw&_ NO)! is p|otted, for
ably not be observed in experimental tumors, since a veryistinct dose intervals, as a function of the time after the
reliable determination 0B is very difficult. On the other treatment beginningT—T,). These curves suggest power
hand, experiments exhibiting both regimes, above and beloyaws for time evolution of the number of cancer cells with a
the critical value, are realizable today due to the great adweak dependence on theparameter. Indeed, we havil{
vances made in drug delivery control. Such assays might N)~(T—T,)? with Be[1.2,1.4. As 7 decreases, the
corroborate the complex behaviors predicted by our modelnumber of tumor cells initially decays for a while, but sub-

The antimitotic treatment affects both the growth andsequently recovers its growtmset of Fig. 8. Below a given

scaling laws. The compact patterns in the original model, fogose intervalN. decreases monotonically up to a constant
which the gyration radius and number of occupied sites oRg|ye.

the tumor border scale as the square root of the total number |y order to analyze the cell division rates through the tu-

of occupied sitedi.e., v=0=1/2), become progressively mor, we computed the average cancer cell density.))

more fractal as the dose intervals are decreased. Consgnd cell division rate fg;,) along a longitudinal cut across
quently, v>1/2 ando>1/2 were obtained, indicating fractal the growth pattern. These average values were plotted as a
tumors with a fractal dimension given lt=1/v. In gen-  function of the distance from the capillary vessel. In Fig. 9,
eral, all the tumors become more fractal when submitted tPhese p|ots are shown for compact patterns treated with dis-
tinct 7 values. For larger values[Fig. Ya)] both, division

rate and cancer cell density, have sharp maxima on the tumor
border in front of and opposite to the capillary vessel. Notice
that the peaks for division rate are significatively narrower
than those for cancer cell density, demonstrating that the pro-
liferative fraction of the tumor comprises just a small rim
located at the tumor border. As the treatment is intensified
(shorter7 values are considergdthe cell densities through
the tumors become more uniform, whereas the division rates
continue exhibiting sharp maxima at the tumor bordé€igs.

9(b) and 9c¢)]. If 7 is sufficiently short in order to halt the
FIG. 7. Morphological transitions a1{* . The patterns were tumor growth, the division rates and cancer densities become
originally compact, and the model parameters are listed in Table [Uniform along the tumofFig. Ad)]. So, in these cases the
The dose period was fixed at=2 and6® varied around its criti- ~ division rates are counterbalanced by the death rates, leading
cal value. to a vanishing net rate of cancer growth. All these results

0.25 0.26 0.28 0.29
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FIG. 9. Density of cancer cells. (continuous linesand division ratesvy;, (dashed linesas a function of the distance from the capillary
vessel along a longitudinal cut of the tumor. The fixed model parameters are those referent to the compact morphology indicated in Table |
and 0&?3:0.3. The plots correspond fa) 7=20, (b) 7=5, (c) 7=2, and(d) 7=1. The left and right vertical axes representandwy;,, ,
respectively. Distances are in lattice units.

show that the tumor patterns are altered when the mitotindividuals undergoing stochastic pairwise interactions.
properties of the cancer cells are modified by external agents. In the cytotoxic model the tumors can be completely
eradicated, cease their growth, or grow continuously. The
last case occurs when the treatment is inefficient or the in-
tervals between consecutive doses of drugs are large. More-

In the present work, a reaction-diffusion model to simu-over, the morphologies and scaling laws of the growing tu-
late the effects of chemotherapies on the growth of carcinomor patterns are preserved. In contrast, for therapeutic
masin situ have been studied. The model includes cell deattapproaches using antimitotic agents a morphological transi-
and division, competition among cancer and normal cells byion in the tumor patterns was observed. The growth patterns
nutrients, and periodical drug administration. Two kinds ofbecome progressively more fractal as more effective treat-
chemotherapies, using cytotoxic and antimitotic drugs, werenents (shorter intervals between consecutive doses and/or
modeled. more efficient drugsare considered.

The main feature of this model is the use of phenomeno- Such morphological transitions are similar to recent stud-
logical, macroscopic reaction-diffusion equations for nutri-ies claiming that bacterial colonies exposed to nonlethal con-
ents and drugs controlling the stochastic actions of individuatentrations of antibiotics exhibit drastic changes in their
cancer cells. Such probabilistic, microscopic rules play thegrowth patternd32]. For bacteria, these changes were im-
role of an effective kinetic model for interacting cell popu- puted to variations in bacterial properties such as metabolic
lations. So, from a theoretical point of view, for all cellular load and chemotaxis. In turn, normal and cancer cells cul-
kinetic models, the derivation of related macroscopic equatured in monolayer and collagen gel exhibit a dynamical
tions from the microscopic description assumes great reltransition in their aggregation regimes as an adaptive re-
evance. This is a difficult and not fully understood problem,sponse to the growth constraints imposed by high cell popu-
which has attracted much attentiphl,31] (and references lation density or long permanence in cultliS]. Again, the
therein. In particular, LachowicZ31] mathematically dis- results obtained in the present work are in agreement with
cussed the diffusive and hydrodynamic macroscopic limits othe point of view that cancer cells can develop an integrated
a general class of kinetic models describing the evolution oflefense program against stress situations similar to the re-

V. CONCLUSIONS
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sponse of bacterial colonies facing severe and sustainedbustness of the tumors fractal scaling and the morphology
threats[30]. However, as far as we are concerned, there argransitions can be masked. Finally, we are modeling other

no reports on cancer literature concerning morphology traneancer therapeutic strategies, such as virus and immunotox-
sitions in the histological patterns of tumors submitted toins therapies, as well as the combination of distinct treat-

chemotherapy. Thus, formal models similar to the one proments, by using reaction-diffusion models similar to those

posed in this paper, generally not familiar for most of bio-considered in this paper.

medical researchel84], can guide and refine new experi-

ments intended to analyze such morphological transitions.

Currently, gxperiments’n vitro with cancer gells are being ACKNOWLEDGMENTS
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